Study On Golf Swing Robot

-Motion control method based on energy contol-Takeharu Nagaoka, Chunquan Xu, Aiguo Ming, and Makoto Shimojo The University of Electro-Communications

Background

Motion control of hyper-dynamic manipulation Capability of hyper-dynamic

manipulation like humans'

Smart structure

Offline motion generation + PD control

Realization of hyper dynamic manipulation while in a smart structure

Research Purpose

To establish a new control method to realize accurate control of high-speed golf swings with utilizing dynamically coupled driving:

- * Stable and high accurate control of golf swings
- * Active torque compensation

 $\begin{pmatrix} a_1 \end{pmatrix}$

 $\tau_2 = -\tau_{2\max}$

Post-impact controller design

Target dynamics: Single pendulum in control of Proportional Plus Gravity Compensation (PPGC)

 $\hat{\mathbf{y}} = \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\dot{\theta}} \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -K_p & -K_i \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\dot{\theta}} \end{bmatrix} - \begin{bmatrix} 0 \\ -K_p \boldsymbol{\theta}_f \end{bmatrix}$

Control law of the pseudo angle: $a_1\tau_1 + a_2\tau_2 = -K_p(\theta - \theta_f) - K_i\dot{\theta} + c + a_1N_1 + a_2N_2$

Control law:

Control law of the arm: $\tau_{1} - \tau_{2} - c_{1} = M_{1}\ddot{\theta}_{1} + \Omega_{1}\sin\theta_{1}$ where: $M_{1} = \left(m_{1}l_{g1}^{2} + m_{2}l_{1}^{2} + J_{1}\right), \Omega_{1} = \left(m_{1}g_{y}l_{g1} + m_{2}g_{y}l_{1}\right)$ $c_{1} = m_{2}l_{1}l_{g2}\left[\left(\ddot{\theta}_{1} + \ddot{\theta}_{2}\right)\cos\theta_{2} - \sin\theta_{2}\left(\dot{\theta}_{1} + \dot{\theta}_{2}\right)^{2}\right]$

 $\begin{aligned} \tau_{1} &= \Big[-K_{p} \Big(\theta - \theta_{f} \Big) - K_{i} \dot{\theta} + c + \Big(a_{1} N_{1} + a_{2} N_{2} \Big) \Big] / \Big(a_{1} + a_{2} \Big) + a_{2} \Big[c_{1} + \Omega_{1} \sin \theta_{1} - K_{i1} \dot{\theta}_{1} - K_{p1} \Big(\theta_{1} - \theta_{1f} \Big) \Big] / \Big(a_{1} + a_{2} \Big) \\ \tau_{2} &= \Big[-K_{p} \Big(\theta - \theta_{f} \Big) - K_{i} \dot{\theta} + c + \Big(a_{1} N_{1} + a_{2} N_{2} \Big) \Big] / \Big(a_{1} + a_{2} \Big) - a_{1} \Big[c_{1} + \Omega_{1} \sin \theta_{1} - K_{i1} \dot{\theta}_{1} - K_{p1} \Big(\theta_{1} - \theta_{1f} \Big) \Big] / \Big(a_{1} + a_{2} \Big) \end{aligned}$

Results of Numerical Examples

Impact speed:20m/sImpact position:the angular positions of the arm
and the club are 0 [deg]

Conclusion

A target dynamics based energy control law for pre-impact swing and proportional plus gravity compensation control law for post-impact swing has been proposed. Numerical results show:

- * Stable and high accurate control of golf swings
- * Utilizaiton of dynamcally-coupled driving by active torque compensation